Copied to
clipboard

G = C33⋊D9order 486 = 2·35

5th semidirect product of C33 and D9 acting via D9/C3=S3

metabelian, supersoluble, monomial

Aliases: C335D9, C34.6S3, C32⋊C913S3, C323(C9⋊S3), (C32×C9)⋊10C6, C3⋊(C32⋊D9), C324D92C3, C33.79(C3×S3), C32.17(C3×D9), C33.25(C3⋊S3), C32.10(C9⋊C6), C3.1(He34S3), C32.46(C32⋊C6), C3.1(C33.S3), C3.2(C3×C9⋊S3), (C3×C9)⋊17(C3×S3), (C3×C32⋊C9)⋊6C2, C32.28(C3×C3⋊S3), SmallGroup(486,137)

Series: Derived Chief Lower central Upper central

C1C32×C9 — C33⋊D9
C1C3C32C33C32×C9C3×C32⋊C9 — C33⋊D9
C32×C9 — C33⋊D9
C1

Generators and relations for C33⋊D9
 G = < a,b,c,d,e | a3=b3=c3=d9=e2=1, ab=ba, dad-1=eae=ac=ca, bc=cb, bd=db, ebe=b-1, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 1520 in 177 conjugacy classes, 44 normal (12 characteristic)
C1, C2, C3, C3, C3, S3, C6, C9, C32, C32, C32, D9, C3×S3, C3⋊S3, C3×C9, C3×C9, C33, C33, C33, C9⋊S3, C3×C3⋊S3, C33⋊C2, C32⋊C9, C32⋊C9, C32×C9, C32×C9, C34, C32⋊D9, C324D9, C3×C33⋊C2, C3×C32⋊C9, C33⋊D9
Quotients: C1, C2, C3, S3, C6, D9, C3×S3, C3⋊S3, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C3×C3⋊S3, C32⋊D9, C3×C9⋊S3, He34S3, C33.S3, C33⋊D9

Smallest permutation representation of C33⋊D9
On 81 points
Generators in S81
(2 78 17)(3 18 79)(5 81 11)(6 12 73)(8 75 14)(9 15 76)(19 56 42)(20 43 57)(22 59 45)(23 37 60)(25 62 39)(26 40 63)(28 71 48)(29 49 72)(31 65 51)(32 52 66)(34 68 54)(35 46 69)
(1 24 53)(2 25 54)(3 26 46)(4 27 47)(5 19 48)(6 20 49)(7 21 50)(8 22 51)(9 23 52)(10 41 70)(11 42 71)(12 43 72)(13 44 64)(14 45 65)(15 37 66)(16 38 67)(17 39 68)(18 40 69)(28 81 56)(29 73 57)(30 74 58)(31 75 59)(32 76 60)(33 77 61)(34 78 62)(35 79 63)(36 80 55)
(1 77 16)(2 78 17)(3 79 18)(4 80 10)(5 81 11)(6 73 12)(7 74 13)(8 75 14)(9 76 15)(19 56 42)(20 57 43)(21 58 44)(22 59 45)(23 60 37)(24 61 38)(25 62 39)(26 63 40)(27 55 41)(28 71 48)(29 72 49)(30 64 50)(31 65 51)(32 66 52)(33 67 53)(34 68 54)(35 69 46)(36 70 47)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)
(1 9)(2 8)(3 7)(4 6)(10 73)(11 81)(12 80)(13 79)(14 78)(15 77)(16 76)(17 75)(18 74)(19 48)(20 47)(21 46)(22 54)(23 53)(24 52)(25 51)(26 50)(27 49)(28 42)(29 41)(30 40)(31 39)(32 38)(33 37)(34 45)(35 44)(36 43)(55 72)(56 71)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)

G:=sub<Sym(81)| (2,78,17)(3,18,79)(5,81,11)(6,12,73)(8,75,14)(9,15,76)(19,56,42)(20,43,57)(22,59,45)(23,37,60)(25,62,39)(26,40,63)(28,71,48)(29,49,72)(31,65,51)(32,52,66)(34,68,54)(35,46,69), (1,24,53)(2,25,54)(3,26,46)(4,27,47)(5,19,48)(6,20,49)(7,21,50)(8,22,51)(9,23,52)(10,41,70)(11,42,71)(12,43,72)(13,44,64)(14,45,65)(15,37,66)(16,38,67)(17,39,68)(18,40,69)(28,81,56)(29,73,57)(30,74,58)(31,75,59)(32,76,60)(33,77,61)(34,78,62)(35,79,63)(36,80,55), (1,77,16)(2,78,17)(3,79,18)(4,80,10)(5,81,11)(6,73,12)(7,74,13)(8,75,14)(9,76,15)(19,56,42)(20,57,43)(21,58,44)(22,59,45)(23,60,37)(24,61,38)(25,62,39)(26,63,40)(27,55,41)(28,71,48)(29,72,49)(30,64,50)(31,65,51)(32,66,52)(33,67,53)(34,68,54)(35,69,46)(36,70,47), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,9)(2,8)(3,7)(4,6)(10,73)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,48)(20,47)(21,46)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,45)(35,44)(36,43)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)>;

G:=Group( (2,78,17)(3,18,79)(5,81,11)(6,12,73)(8,75,14)(9,15,76)(19,56,42)(20,43,57)(22,59,45)(23,37,60)(25,62,39)(26,40,63)(28,71,48)(29,49,72)(31,65,51)(32,52,66)(34,68,54)(35,46,69), (1,24,53)(2,25,54)(3,26,46)(4,27,47)(5,19,48)(6,20,49)(7,21,50)(8,22,51)(9,23,52)(10,41,70)(11,42,71)(12,43,72)(13,44,64)(14,45,65)(15,37,66)(16,38,67)(17,39,68)(18,40,69)(28,81,56)(29,73,57)(30,74,58)(31,75,59)(32,76,60)(33,77,61)(34,78,62)(35,79,63)(36,80,55), (1,77,16)(2,78,17)(3,79,18)(4,80,10)(5,81,11)(6,73,12)(7,74,13)(8,75,14)(9,76,15)(19,56,42)(20,57,43)(21,58,44)(22,59,45)(23,60,37)(24,61,38)(25,62,39)(26,63,40)(27,55,41)(28,71,48)(29,72,49)(30,64,50)(31,65,51)(32,66,52)(33,67,53)(34,68,54)(35,69,46)(36,70,47), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81), (1,9)(2,8)(3,7)(4,6)(10,73)(11,81)(12,80)(13,79)(14,78)(15,77)(16,76)(17,75)(18,74)(19,48)(20,47)(21,46)(22,54)(23,53)(24,52)(25,51)(26,50)(27,49)(28,42)(29,41)(30,40)(31,39)(32,38)(33,37)(34,45)(35,44)(36,43)(55,72)(56,71)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64) );

G=PermutationGroup([[(2,78,17),(3,18,79),(5,81,11),(6,12,73),(8,75,14),(9,15,76),(19,56,42),(20,43,57),(22,59,45),(23,37,60),(25,62,39),(26,40,63),(28,71,48),(29,49,72),(31,65,51),(32,52,66),(34,68,54),(35,46,69)], [(1,24,53),(2,25,54),(3,26,46),(4,27,47),(5,19,48),(6,20,49),(7,21,50),(8,22,51),(9,23,52),(10,41,70),(11,42,71),(12,43,72),(13,44,64),(14,45,65),(15,37,66),(16,38,67),(17,39,68),(18,40,69),(28,81,56),(29,73,57),(30,74,58),(31,75,59),(32,76,60),(33,77,61),(34,78,62),(35,79,63),(36,80,55)], [(1,77,16),(2,78,17),(3,79,18),(4,80,10),(5,81,11),(6,73,12),(7,74,13),(8,75,14),(9,76,15),(19,56,42),(20,57,43),(21,58,44),(22,59,45),(23,60,37),(24,61,38),(25,62,39),(26,63,40),(27,55,41),(28,71,48),(29,72,49),(30,64,50),(31,65,51),(32,66,52),(33,67,53),(34,68,54),(35,69,46),(36,70,47)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81)], [(1,9),(2,8),(3,7),(4,6),(10,73),(11,81),(12,80),(13,79),(14,78),(15,77),(16,76),(17,75),(18,74),(19,48),(20,47),(21,46),(22,54),(23,53),(24,52),(25,51),(26,50),(27,49),(28,42),(29,41),(30,40),(31,39),(32,38),(33,37),(34,45),(35,44),(36,43),(55,72),(56,71),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64)]])

54 conjugacy classes

class 1  2 3A···3M3N3O3P···3W6A6B9A···9AA
order123···3333···3669···9
size1812···2336···681816···6

54 irreducible representations

dim111122222266
type+++++++
imageC1C2C3C6S3S3C3×S3D9C3×S3C3×D9C32⋊C6C9⋊C6
kernelC33⋊D9C3×C32⋊C9C324D9C32×C9C32⋊C9C34C3×C9C33C33C32C32C32
# reps1122316921836

Matrix representation of C33⋊D9 in GL10(𝔽19)

11000000000
01100000000
00110000000
00011000000
0000100000
0000010000
00005001800
00007011800
000017003173
00001218182181
,
01800000000
11800000000
0013000000
001817000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
0010000000
0001000000
00001730000
00001810000
000014318100
0000121218000
00008030173
0000138218181
,
141700000000
21200000000
0013000000
001817000000
00001603000
00001401100
000013030181
000015181118018
0000000010
0000409010
,
71400000000
21200000000
0023000000
001817000000
0000700300
00001401100
00001310300
00003001200
0000000010
00001018188118

G:=sub<GL(10,GF(19))| [11,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,0,1,0,5,7,17,12,0,0,0,0,0,1,0,0,0,18,0,0,0,0,0,0,0,1,0,18,0,0,0,0,0,0,18,18,3,2,0,0,0,0,0,0,0,0,17,18,0,0,0,0,0,0,0,0,3,1],[0,1,0,0,0,0,0,0,0,0,18,18,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,3,17,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,17,18,14,12,8,13,0,0,0,0,3,1,3,12,0,8,0,0,0,0,0,0,18,18,3,2,0,0,0,0,0,0,1,0,0,18,0,0,0,0,0,0,0,0,17,18,0,0,0,0,0,0,0,0,3,1],[14,2,0,0,0,0,0,0,0,0,17,12,0,0,0,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,3,17,0,0,0,0,0,0,0,0,0,0,16,14,13,15,0,4,0,0,0,0,0,0,0,18,0,0,0,0,0,0,3,1,3,11,0,9,0,0,0,0,0,1,0,18,0,0,0,0,0,0,0,0,18,0,1,1,0,0,0,0,0,0,1,18,0,0],[7,2,0,0,0,0,0,0,0,0,14,12,0,0,0,0,0,0,0,0,0,0,2,18,0,0,0,0,0,0,0,0,3,17,0,0,0,0,0,0,0,0,0,0,7,14,13,3,0,10,0,0,0,0,0,0,1,0,0,18,0,0,0,0,0,1,0,0,0,18,0,0,0,0,3,1,3,12,0,8,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,18] >;

C33⋊D9 in GAP, Magma, Sage, TeX

C_3^3\rtimes D_9
% in TeX

G:=Group("C3^3:D9");
// GroupNames label

G:=SmallGroup(486,137);
// by ID

G=gap.SmallGroup(486,137);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,3134,548,986,867,3244,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^9=e^2=1,a*b=b*a,d*a*d^-1=e*a*e=a*c=c*a,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽